Vous êtes ici :

Un pas vers la prédiction de la supraconductivité à haute température

Date de publication : 02/06/25

ThèmesCommuniqué de presse [Presse] Recherche 

Des physiciens de l’Institut de physique et chimie des matériaux de Strasbourg (IPCMS, Unistra/CNRS), en collaboration avec l’Institut Quantique (Université de Sherbrooke, Canada) et l’Université Rutgers (États-Unis) ont franchi une étape décisive : ils ont mis au point une méthode théorique qui permettrait à terme de prédire les propriétés supraconductrices à haute température de matériaux à partir de leur seule composition chimique. Une avancée qui ouvre la voie à la conception de nouveaux matériaux supraconducteurs plus performants.


Lien vers la publication scientifique : https://journals.aps.org/prx/abstract/10.1103/PhysRevX.15.021071

La supraconductivité est un état quantique de la matière dans lequel les électrons s’organisent en paires, permettant un transport de courant sans perte d’énergie. Si ce phénomène est bien compris dans certains métaux à très basse température, comme l’aluminium ou le niobium, il restait jusqu’ici difficile à expliquer dans les matériaux à supraconductivité dite "à haute température", comme les dérivés d’oxyde de cuivre appelés cuprates.

Les chercheurs ont développé un nouveau cadre théorique capable de relier les propriétés supraconductrices à la structure atomique des matériaux. Leur méthode a été testée avec succès sur deux familles complexes de cuprates multicouches : HgBa₂Caₙ₋₁CuₙO₂ₙ₊₂ et Ca₁₊ₙCuₙO₂ₙCl₂ (n=1,…,5).

Résultat : à partir de la structure cristalline et d’un seul paramètre fixe, ils ont pu reproduire des observations expérimentales majeures notamment la suprématie des composés tri-couches (n=3) en matière de supraconductivité. Ce comportement s’explique par deux effets concurrents : la présence bénéfique de couches internes de CuO₂ et une répartition inégale des électrons qui tend à défavoriser ces mêmes couches.

En apportant une compréhension fine et prédictive de ces phénomènes, cette approche permet de dépasser les modèles antérieurs, souvent limités à une description qualitative.

Avec l’objectif à long terme d’atteindre une supraconductivité à température ambiante, cette nouvelle méthode constitue un premier pas vers une meilleure compréhension des mécanismes quantiques à l’œuvre dans les matériaux complexes et ouvre de nouvelles perspectives pour la conception de matériaux supraconducteurs de nouvelle génération.

Contact scientifique :
Benjamin Bacq-Labreuil
benjamin.bacq-labreuil@ipcms.unistra.fr

Contact presse :
Université de Strasbourg : Mathilde Hubert | mathilde.hubert@unistra.fr

Partenaires

Logo du CNRS
Logo Établissement associé de l'Université de Strasbourg
Logo du réseau Epicur
Logo de EUCOR, Le Campus européen
Logo de l'Inserm Grand Est
Logo de l'Inria

Labels

Logo du label Bienvenue en France
Logo du programme HRS4R
Logo du programme France 2030
Logo de Service Public+
Logo du Label Développement durable et responsabilité sociétale

Réseaux

Logo de France Universités
Logo de la Ligue européenne des universités de recherche (LERU)
Logo du réseau Udice
Logo de l'Université franco-allemande