Sculpting electronic quantum trajectories with light

Rupert Huber

Department of Physics and Regensburg Center for Ultrafast Nanoscopy (RUN)
University of Regensburg

The carrier wave of light can drive electrons through solids on time scales faster than a cycle of light. This 'lightwave electronics' concept opens a fascinating coherent quantum world full of promise for future quantum technologies. We will discuss prominent examples of lightwave-driven dynamics in solid-state quantum materials, ranging from Bloch oscillations via topologically non-trivial electron trajectories to optical band-structure engineering and attoclocking of Bloch electrons. We also take slow-motion movies of single molecules and atomic defects and observe the quantum flow of electrons with the first all-optical subcycle microscope reaching atomic resolution. Our results offer a radically new way of watching and controlling elementary dynamics in nature or steer chemical reactions, on their intrinsic spatio-temporal scales.

